Microarray analysis of bleomycin-exposed lymphoblastoid cells for identifying cancer susceptibility genes.

نویسندگان

  • Jacqueline Cloos
  • Wim P H de Boer
  • Mireille H J Snel
  • Paul van den Ijssel
  • Bauke Ylstra
  • C René Leemans
  • Ruud H Brakenhoff
  • Boudewijn J M Braakhuis
چکیده

The uncovering of genes involved in susceptibility to the sporadic cancer types is a great challenge. It is well established that the way in which an individual deals with DNA damage is related to the chance to develop cancer. Mutagen sensitivity is a phenotype that reflects an individual's susceptibility to the major sporadic cancer types, including colon, lung, and head and neck cancer. A standard test for mutagen sensitivity is measuring the number of chromatid breaks in lymphocytes after exposure to bleomycin. The aim of the present study was to search for the pathways involved in mutagen sensitivity. Lymphoblastoid cell lines of seven individuals with low mutagen sensitivity were compared with seven individuals with a high score. RNA was isolated from cells exposed to bleomycin (4 hours) and from unexposed cells. Microarray analysis (19K) was used to compare gene expression of insensitive and sensitive cells. The profile of most altered genes after bleomycin exposure, analyzed in all 14 cell lines, included relatively many genes involved in biological processes, such as cell growth and/or maintenance, proliferation, and regulation of cell cycle, as well as some genes involved in DNA repair. When comparing the insensitive and sensitive individuals, other differentially expressed genes were found that are involved in signal transduction and cell growth and/or maintenance (e.g., BUB1 and DUSP4). This difference in expression profiles between mutagen-sensitive and mutagen-insensitive individuals justifies further studies aimed at elucidating the genes responsible for the development of sporadic cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EVALUATION OF HMGA2 AND SMARCA5 GENES EXPRESSION IN 4T1 CELLS EXPOSED TO METHOTREXATE: BIOINFORMATIC AND EXPERIMENTAL STUDY

Background & Aims: Breast cancer is a threatening disease in females and is the second common cancer among women after lung cancer. The aim of this research is to bioinformatically and experimentally evaluate the effect of methotrexate (MTX) on the expression of HMGA2 and SMARCA5 genes in the MTX treated 4T1 cancer cell line. Materials & Methods: To perform this study, initially microarray dat...

متن کامل

تحلیل تصاویر ریزآرایه به منظور تشخیص نوع سرطان سینه

Background: Microarray technology is a powerful tool to study and analyze the behavior of thousands of genes simultaneously. Images of microarray have an important role in the detection and treatment of diseases. The aim of this study is to provide an automatic method for the extraction and analysis of microarray images to detect cancerous diseases. Methods: The proposed system consists of t...

متن کامل

تحلیل تصاویر ریزآرایه به منظور تشخیص نوع سرطان سینه

Background: Microarray technology is a powerful tool to study and analyze the behavior of thousands of genes simultaneously. Images of microarray have an important role in the detection and treatment of diseases. The aim of this study is to provide an automatic method for the extraction and analysis of microarray images to detect cancerous diseases. Methods: The proposed system consists of t...

متن کامل

Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...

متن کامل

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2006